Page images
PDF
EPUB

Log, a log. p sin 'log. A ;
log. ulog. p cos + log. sin H;
log. vlog. ulog. sin D'+9.4180; log. g = log. G+ log. sin D'

log. flog. p sin p' + log. cos D',
log. Glog. p cos p' + log. cos H,

log. blog. Glog. B.

gr

V · f. log. u log. G+ 9.4180; h=1— (a + b).

=

[ocr errors]

3. With the values of p, q, u, v, &c., found for the requisite times, make the computation by Arts. 8, 9, &c., of the rule to Prob. XVI., using logarithms to four decimal figures, and natural numbers to three or four decimals. Then, for the times of beginning and end thus found, taken to the nearest hundredth of an hour, repeat the calculation, using logarithms to five or more decimal figures.

When the eclipse is annular or total, the times of its beginning and ceasing to be so, are found in a similar manner, only using 7 instead of 1.

Note.-The general quantities, whose values are found by the first article, serve not only for calculating the times of beginning, &c., of an clipse for any place at which it will be visible, but also for the calculations requisite to determine the longitude of a place, from the observed times of beginning and end at that place.*

EXAMPLE.

Let it be required to compute, for Philadelphia, the eclipse of May 15th, 1836.

1. For quantities independent of the place.

By the Nautical Almanac, the time of new moon is May 15th, at 2hrs. 6.9m. Taking, therefore, T 15d. 2h., we find from the Nautical Almanac,† and from tables of sines, tangents, &c., the following quantities :

π-T!

D. h.
15 051° 10′ 25′′.35 52° 15′28′′.95
52°15′28′′.9565 3.6054′25′′.60

54' 17".12

3729 .00 54 24 .90

151 40 28 .1452 17 57 .14 54 16 .42 252 10 33 .90 52 20 25 .34 9 51 .44 54 24 .218.48 54 15 .73 352 40 42 .6252 22 53 .55 17 49 .0754 23 .53 54 15 .05 453 10 54 .30 52 25 21 .78+45 32 .52 54 22 .85

54 14 .73

[ocr errors]

*The values of p, q, u, v, &c., are found by the formulæ in Art. 75 of the Appendix. To find them by the formulæ in (App. 69), the values of a, d, and g, must first be computed (App. 68). For all important eclipses, these and the other general data are given in the Berlin Ephemeris.

†The values of A, A′, D, D', 7, and f' may be obtained from the part of the Nautical Almanac given in Table LXV. The value of is given in a different x part of the Almanac.

D. h.

D

15 019° 1′24.70′′N.

119 11 33.01 219 21 36.10 319 31 33.96 419 41 26.60

π

A

D.

D. h.log.sin D'log.cos D' log. A. | log. B. |—n' 15 09.511399.975827.1746 7.6391

19.51161 9.97579 7.1749 7.6390 29.511829.975777.17517.6390

P

A — A

D'

b

d

g'

39.512049.97574 7.1753 7.6390 49.512259.97572 7.1755 7.6390|

[ocr errors]

h.m 0 0

p

A — A' .

At time T 2. or Ohr.

Ar. Co. log. sin 1.8016094

[ocr errors][merged small]

+ 0.006960

p. 1.13301

30 0.89265

[merged small][ocr errors]
[ocr errors]

+ 0.000093

- 0.41184

30

20 0.17140

30 0.06907

[ocr errors]

D'

18°56′ 35.90′′N. + 4'48.80" 15′ 49.90" 7.6632559
18.56
18 57 11.11 +14 21.90 15 49.89 7.6632525

10":

18 57 46.28
18 58 21.42
18 58 56.53

23 49.82 15 49.88 7.6632491 +33 12.54 15 49.88 7.6632456 +42 30.07 15 49.87 |7.6632422

30+0.30956

30+ 0.55005

40+ 0.79056

π

log. sin 8.2770142n D

B

log.cos 9.9756086

log. sin 8.27701n
log. sin 9.51139

.24039

.24042

.24044

א"

.24047

.24049

.24049

.24051

0.0542322n +b=+

D-D'

log. 0.0542n

d'

log. sin 8.2770n с
log. B. 7.6391

5.9703

Making similar calculations for the other hours, finding the values of p and q for the half hours, by the last problem, and proceeding as directed in the rule, we obtain the following values.

Diff

+.24036

p' +4807

7.84263 π

.4808

.4809

D'

a + 0.088671

3480

q + 0.09215

[ocr errors]

g

ι

q. 0.09215

0.17903

+ 0.291652 id=+ .000046

0.26584

+0.273210

0.35258

Ar. Co. log. sin 1.8017948 log. sin 8.1993348 9.4353665 9.4363961

0.43926

0.52587

Ar. Co. log. sin 1.8016094 log. sin 7.1461719 8.9477813

.4810 0.61241

0.69889

.4811 0.78530

'Ar. Co. log. sin 1.8016094

log.cos 9.9999996

log. tang 7.6632559 9.4648649

0.291606
0.273210

0.56482

Diff.

+.08688

.08681

.08674

. 08668

[ocr errors]

.08661

.08654

.08648

.08641

ľ +.1738 0.56481 0.01840

.1738 0.564810.01

.56486 .01844

.1735 .56490 .01848

.56494 .01852

.1733 .56497 .01855

.56500 .01858

.1730 .56502 .01860

.56504 .01862

.1727 .56505 .01863

Sidereal time at mean noon at Greenwich,
Add for interval of 2hrs., from tab. X.

Z

[merged small][merged small][merged small][ocr errors][ocr errors]

H, at time T, (2hrs.) 44 11 0

A" 2′ 28′′.2

Making now the approximate calculation, the results obtained would be nearly the same as those found in the first example to Prob. XVI. We may, therefore, for finding the times of beginning and end more accurately, take T′ = 0.06h. for the beginning, and T' = 2.56h. for the end.

Z

Long. of Philada.

Z, at time T,
A', “

(6

.00095

= .0578

For Philadelphia.

p=-1.10417;q=0.10258; p=0.4807; d=0.1738; H-73°17′0′′.

log. p sin o'

log. p sin o'
D'

.73522

Τ

.0625

9.8053

log. A. 7.1746

6.9799

9.88517

log. sin 9.98125 n

For the beginning.

83° 19′ 25′′.3
75 10

h.

h. m.

0.06 0 3.6

9.86642 n

log. sin 9.5114

9.4180

8.7958 n

log. G. 9.3440

9.4180

8 9 25.3

52 20 25.3

[blocks in formation]

h. m.

sec.

3 22 57.98

2 0 16.71

5 33 17.69 83° 19′ 25′′.3

8.7620

b = .00096

h = 1 − (a + b) =.56290

9.80532

log. cos 9.97582

9.78114

9.88517

log.cos 9.45885

log. G. 9.34402 log. sin 9.51140

8.85542

log. G. 9.3440 log. B. 7.6391

6.9831

[merged small][ocr errors]
[ocr errors]
[ocr errors]

V

p'u'.4229

[ocr errors]

P U

d

a = .00096

log. p cos. q' H

[ocr errors]
[blocks in formation]

N 60° 48′ 20′′

- .36895

.20615

.2363

[ocr errors]

W

u

ť

.0382

.44887

[ocr errors]
[ocr errors]

.22373

130° 31' 11"

.86478

.87242.

T'

h.

h. m. sec.

T' — t' + t = 0.06764 = 0 4 3.5 true time of beginning.

[ocr errors]

h.

- 2.56

p=.09793; q.53625; p=.4810; g.1731; H-35° 47′ 0′′.

log. p sin o'

ρ

log. p sin '

ρ

D' .

9.8053

log. A 7.1752

6.9805

log. 9.37346

Ar. Co. 0.37376

9.88517

log. sin 9.76695n

9.65212n

log. cot 9.74722
log. 9.56697n

9.31419n

log. sin 9.5119

9.4180

8.5820n

log. sin 9.94100
log. 9.34973

Ar. Co." 0.24957

log. cos 9.54030

For the end.

[merged small][merged small][ocr errors]
[merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small]
[ocr errors][merged small][ocr errors][merged small][ocr errors][merged small][ocr errors][ocr errors][merged small][ocr errors][merged small][merged small][ocr errors][merged small][ocr errors][ocr errors][ocr errors][merged small][ocr errors][ocr errors][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small]

h. m. sec.

Beginning 7 3 23.5 A. M., Philad'a mean time.
9 32 38.0 ،،

،،

(6

(6

End

[ocr errors]

2

If a more accurate computation of the time of greatest obscuration and of the quantity of the eclipse is desired, let T' the time before found, taken to the nearest hundredth of an hour, and find the values of p, q, u, v, &c., for this time. The computation may then be made by articles 8 and 10 of the rule to Prob. XVI., using logarithms to five decimal figures, and putting the value of g' found by the first part of the present rule, in stead of the number 2732.

« PreviousContinue »