Page images
PDF
EPUB
[merged small][merged small][ocr errors][merged small][merged small][merged small][ocr errors][ocr errors][ocr errors][ocr errors][ocr errors][merged small][merged small]

Epoch, Mean Time.
(G), Greenwich.
(B), Berlin.

ELEMENTS OF THE MINOR PLANETS, OR ASTEROIDS.

Mean Longitude Longitude of the at the Epoch. Perihelion.

1848, Jan. 1, (B)
1852, July 10, (G)
1850, Sept. 19, (B)
1854, Jan. 1, (G)
1850, Jan. 9, (B)
1853, March 23, (B)
1853, Oct. 9, (B)
1854, Jan. 1, (G)
1853, Jan. 1, (G)
1853, Jan. 20, (B) 97 16
1853, Jan. 9, (B)
43 29
1853, Jan. 1, (G) 129 54
1852, Sep. 27.354, (B) 357 27
1852, May 31, (B)
214 32
1851, April 29.5, (B) 197 37
1852, Dec. 21, (B)
1852, Aug. 3, (G)
1853, Jan, 0, (B)
1852, Dec. 21, (B)
1854, Jan. 1, (G)
1850, April 8, (B)
1850, Sept. 25, (B)
1850, Aug. 23, (B)
1853, Jan. 0, (B)
1853, Jan. 1, (G)
1851, Sept. 28.5, (B)
1854, Jan. 1, (G)

68° 48′ 47.5 33° 0'
302 19 23. 4 15 15
339 11 55. 9301 52
74 46 25. 6 87 15
116 30 51. 0 250 46
162 49
162 49 27. 0 41 18
26 48 39. 8 71 40
314 12 54. 9302 41
54. 9302 41
44 54 11. 8 98 19
27. 6.15 13
52. 0326 33
44. 9316 14
6. 8 32 21
51. 0 259 13
6. 8135 42
229 43 5. 4119 36
328 49 52.
52. 4178 46
89 5 3. 8123 11
64 5 33. 0 28 9.
273 55 31. 7235 38
178 55 23. 6 54 24
6 52 41. 9147 46
338 52 59. 1121 21
77 6 24. 4 58: 49
202 58 0. 6 12 57
356 45 11. 9228 2
215 34 49. 0139 30

Longitude of the Inclination to the Sid. Revolution Mean Distance
Ascending Node. Ecliptic. in M. S. Days. from the Sun.

23./2 110° 18/
36. 5150

0

26

31. 4 235
29. 0 93

30

32. 2 103

23

14

29

59. 9 259
41. 6
41. 6 68
49. 7214
0. 5206
58. 8138
2. 1 80
19. 3124
19. 1211
18. 0125
31. 7141
46. 4 43

2.5 86
57. 0 67
5. 7293
29. 3 45
45
12. 8 170
12. 4 80
48. 5 172
24. 2 66
14. 4 150
28. 7 287
0. 1 35

4

53

32

26

57

17

26

27

18

49

55

55

55

54

48

43

36

36

39

38

35

3."8 5° 53'
47. 6 10 9
8 23

54. 4

18. 7

1 36

31. 6

48. 7

7 8
5 28
59. 7 5 35

5. 721 34
29. 3
29. 3 0 41

8. 7 14 46

50. 2 3 5

44. 7

4 36
34. 8 1 32
25. 2 5 35
47. 5 5 19

55. 3 9

46. 6 16 32
6
4. 3 10 13

9. 3 11 43

54. 6
54. 6 3 35

45. 6 13 3
46. 6 10 37
59. 7 34 37
50. 5 13 44
47. 6 3 3
26. 6 3 47
0 49

1. 1

[ocr errors]

6."2

1193.222

2. 2

6. 8

1269.633
1303.197
9. 0 1314.029

29. 7 1325.147

1345.315

16. 0
55. 3

1346.111

54. 2 1352.166

1365.150

4. 5
35. 1
36. 9
1. 2
35. 0
39. 3
23. 0

59. 5

1379.457

1387.100

1400.803

1408.038

1425.857

1511.370

1512.106

1517.455

1554.212

1566.768

42. 2

59. 1
55. 0
39. 6 1578.167
22. 1 1594.296
4. 4 1682.125
33. 1 1686.510
48. 7 1814.765
52. 0 1825.315
10. 8 2043.390
13. 7 2043.992

Eccentricity.

2.201653 0.1565408
2.294670 0.2165090

2.334935 0.2181896
2.347853 0.1713700

2.361081

0.0895694

0.2317452

0.1233821

0.2507330

0.1457463

0.2020361

0.1624455

2.625877

2.640004

2.384977

2.385917

2.393066

2.408360

2.425160

2.434106

2.450113 0.0998142
2.458544 0.1702998

2.479240 0.1308650

2.577402

0.1887517

2.578238 0.0853696

2.584312 0.1683269

0.2353947

0.1874427

2.652790

0.0861356

2.670837 0.2548847

2.768051

0.0766523

2.772858

0.2398150

2.911710

0.1036109

0.1376471

2.922984
3.151392 0.1009159
3.152007 0.1176300

Tropical revolution

Sidereal 66

66

Synodic
Anomalistic "

Nodal

66

[merged small][merged small][ocr errors][merged small]

Sidereal revolutions of the satellites, and their mean distances from the planets about which they revolve. The distances are expressed in terms of the equatorial radius of the planet.

Different Revolutions of the Moon.

[blocks in formation]

JUPITER.

Mean Distance.

SATURN.

Tethys ....

Dione ......

Rhea..

Titan

Hyperion
Iapetus....

Days. 27.3215255

27.3215830

29.5305885

Mean Distance.

27.5545704

27.2122222

6.04853...
9.62347............ 3.5511810
15.35024............ 7.1545528
26.99835..... 16.6887697

26.5

64.359....

Sider. Revolution. Days. 1.7691378

Days. 3.351...... .... 0.94271

4.300....

1.37024

5.284......

1.88780

6.819............ 2.73948
9.524...

... 4.51749
.15.94530

22.081.........

.21.18
.79.32960

Sider. Revolution.

[blocks in formation]

Sun
Neptune
Uranus

Saturn..

Jupiter

Mars

Earth

Venus.

Mercury...

URANUS.

Mean Distance.

13.120..

17.022..

19.845.......

10.9611

22.752..... .... 13.4559

45.507............ 38.0750
91.008....... .107.6944

Masses and densities of the sun and planets, the mass of the sun and density of the earth being each assumed = 1.

[merged small][merged small][ocr errors][merged small][merged small]

Sider. Revolution.

Days.

5.8926

8.7068

1 359551

401839

1

4865751

Densities.
0.252

unknown.

0.242

0.138

0.238

0.948

1.000

0.923

1.12

Denoting the earth's mass by a unit, the moon's mass is about , and her density about 0.615.

Remark. The masses of the planets given above, except that of Neptune, are taken from a table in the Astr. Nach. No. 443. That of Mercury has been very recently obtained by Prof. Encke, from the effects of this planet in disturbing the motion of the comet which bears his name.

[ocr errors]

A NUMBER of the formulæ included in the following collection are used in the present work. The demonstrations may be found in any good work on Trigonometry.* They are introduced here, and numbered in order to facilitate the references.

1. sin2 a

2. sin a =

3. sin a =

APPENDIX TO PART I.

4. cos a

From a single arc or angle a, the radius being 1.

7. sin a =

cos2 a = 1 tang a cos a

or, sin 2 a

8. cos a

tang a
√(1+tang2 a)
1.

9. cos a =

10. tang a

11. tang 1 a

12. tanga

TRIGONOMETRICAL FORMULA.

5. tang a

√ (1 + tang” a)

sin a

6. cot. a =

cos a

1

tang a

cos a sin a

[ocr errors]
[ocr errors]

2 sina cosa

2 sin a cos a

2 sina a 1 sin a

1 + cos a

cos a

1

2 cos2

1

[ocr errors]

sin a

1

cos a

1 + cos a

For two arcs a and b of which a is supposed to be the greater.

13. sin (a + b)
14. cos (a + b)

sin a cos b + cos a sin b
cos a cos b sin a sin b
tang atang b

15. tang (a+b)

I tang a tang b

16. sin a cos b
17. cos a sin b

sin (a + b) + 1⁄2 sin (a
sin (a + b)
cos (a b) — 1⁄2
cos (a - b) +

18. sin a sin b
19. cos a cos b

[ocr errors]
[ocr errors][merged small][merged small]

* The best treatise upon that subject, in our language, is that by Chauvenet, recently published.

[merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small]

34. cos a
35. cos A

— b)

– b)

2 sin 1 (a + b) cos ž (a
2 cos(a + b) sin 1 (a
2 cos(a + b) cos † (a
2 sin (a + b) sin 1 (a —b)

b)

sin (a+b)

cos a cos b

sin (a - b)

cos a cos b

tang b

28. tang (a + b) =

37. cot A

36. cot a =

[ocr errors]
[ocr errors]
[ocr errors]

sin (a+b)

sin a sin b

sin (a - b)

sin a sin b

sin a

cos b

sin a+ sin b

cos a + cos b

sin a

sin b

cos a + cos b

sin b

For a Spherical Triangle, in which A, B, C, are the angles, and a, b, and c, the opposite sides, as in Fig. 58.

33. sin A sin b sin B sin a

cos a

sin a + sin b
cos b - cos a

sin asin b
sin a sin b

[ocr errors]
[ocr errors]
[merged small][merged small][ocr errors][merged small]

38. sin A = √

39. tang (ba) tang c

1 +

40. tang 1⁄2 (b − a)

41. tang (BA) cot C

tang c

cos 1⁄2 (B

A)

(BA)

A)

[ocr errors]
[ocr errors]

cos

sin(B
sin(BA)
cos (b a)

cos 1⁄2 (b + a)

« PreviousContinue »