## Journal of the Franklin Institute, Volume 339Pergamon Press, 2002 Vols. 1-69 include more or less complete patent reports of the U. S. Patent Office for years 1825-1859. cf. Index to v. 1-120 of the Journal, p. [415] |

### From inside the book

Results 1-3 of 78

Page 168

...

...

**matrices**of y ( k ) , x ( k ) , w ( k ) and r ( k ) , respectively , o denotes variance of w ( k ) and**matrix**H is the convolution**matrix**corresponding to ĥ . Given ĥ , o , o and**matrix**P , the MSE can be computed via Eqs . ( 10 ) ...Page 169

...

...

**matrix**P , = TTT is near optimal . However , the true cumulant**matrix**is unknown and the only way one can apply this idea is by using third - order cumulant estimates obtained as Ĉn.y = 1 N N Σ i = 1 ( 3 ) ( 28 ) Unfortunately , as it ...Page 419

...

...

**matrix**G is fixed , the additional freedom in choosing the decoding**matrix**L can be used to our advantage . For example , if faults are permanent , we can reconfigure the decoding**matrix**to L = [ 0 I , 0 ] when the first system fails ...### Contents

Contents | 1 |

Vol 339 No 2 MARCH 2002 | 129 |

PERGAMON ISSN 00160032 | 248 |

Copyright | |

10 other sections not shown

### Other editions - View all

### Common terms and phrases

2002 The Franklin adaptive algorithm analysis angiogenesis applied approach Benjamin Franklin Medal Chebyshev Chebyshev polynomials chirp closed-loop computation consider constraints corresponding coset defined denote detection domain dynamic systems Elsevier Science Ltd encoding energy equation estimation example fault fault-tolerant feedback finite flywheel Franklin Institute Franklin Institute 339 Franklin Institute www.elsevier.com/locate/jfranklin frequency response frequency response functions gain given group machine homomorphism IEEE IEEE Trans implementation input k₁ mapping Mathematics matrix method NARMAX model noise nomograph nonlinear systems observer obtained optimal control optimal control problem output packet paleomagnetic paper parameters performance Petri net phase error PID controller polynomials proposed Published by Elsevier quadratic redundant residual ScienceDirect Section selectivity semiautomata semigroup shown in Fig signal processing simulation solution solve SPRO stability T₁ TDTL Theorem trajectories transfer function transform transitional filter University v₁ variables vector Widrow zero