1 3 5 7 9 11 13 15 17 19 21 23 25 27 The Parallaxes and Semidiameters of the Planets are given in the Nautical Almanac. 98.5 128.3 162-0 198-3 239-7 285-0 334-3 387-5 198-9 240-4 285'8 335-2 388-4 199-6 241-2 2866 336-0389-3 99-0 128-8 162-6 200-3 241-9 287-4 336-9 390-2 99-4 129-3 163-2 2009 242-6 288-2 337-7 391-1 99-9 129-9 163-8 2016 243-3 289-0 338-6 392-1 100-4 1304 1644 202-2 244 1 289-8 339-4 393-0 100-8 1310 165.0 202-9 2448 2906 340-3 393-9 101-3 131-5 165-6 2036 245.5 291-4 341-2 3948 101-8 1320 166-2 2042 2463 292-2 342′0 395-8 75'9 102.3 132-6 1668 2049 2470 2930 342-9 3967 76-3 102-7 1331 1674 2056 2477 2938 343.7 397-6 20.7 35.5 54.1 76.7 103 2 1336 1680 2063 248.5 294'6 344-6 398*6 20.9 35'7 54.5 77.1 103.7 134-2 1686 2069 249-2 295-4 345.5 399-5 21.2 36'0 54.8 77-5 104-2 134-7 1692 2076 2499 296-2 346-4 | 400'5 21.4 36:3 55'1 77.9 104-6 135 3 169-8 208-3 250-7 297-0 347-2 401·4 21.6 36.6 55'5 78.3 105.1 135-8 170-4 2089 251-4 297-8 3481 402-3 21.8 36'9 55'8 78.8 1056 136.3 1710 2096 252-2 298.6 349-0 403-3 22.0 37°2 56°2 79.2 106-1 1369 171-6 2103 2530 299-4 349-8 404-2 22.3 37:4 56.5 79'6 22.5 37.7 56.9 80.0 22.7 38.0 57.3 80.4 22-9 38.3 57.6 80.8 23.1 38'6 58.0 81.3 23.4 38'9 58.3 81.7 23.6 39'2 58.7 82.1 23.8 39'5 59'0 82.5 24.0 39'8 59'4 83.0 24.3 40'1 59'8 83.4 24.5 40'3 60-1 83.8 24.7 40'6 60'5 84.2 25.0 40'9 60'8 84.7 25.2 41'2 61.2 85'1 25.4 41'5 61.6 85.5 " " " " " " 0 0-0 2-0 7.8 177 31.4 1 0-0 2-0 8-0 2 0-0 2-1 8-1 20.1 34.6 20.3 34.9 49-1 70-7 16 0.1 3.1 10.1 17 0.2 3.2 10-2 18 0-2 3.3 10:4 19 0-2 34 105 20 0.2 35 107 21 0-2 3-6 108 22 0-3 37 110 23 0.3 3.8 11.2 24 0.3 3.8 11:3 25 0.3 39 11:5 26 0-4 4-0 11.6 27 0-4 4-1 11.8 28 0-4 4-2 119 29 0.5 4.3 12.1 0.5 44 12.3 31 0.5 4.5 12:4 32 0.6 4.6 12.6 33 0-6 47 128 34 0.6 4.8 12.9 35 0-7 4-9 13:1 36 0.7 5.0 13:3 37 0.7 5.1 13:4 38 08 52 13'6 39 0.8 5.3 13.8 40 0-9 54 14:0 86.4 86.8 42'8 63'0 87.3 43'1 63'4 87.7 43'4 63.8 88.1 27.1 43'7 64.2 886 27.4 44'0 64.5 89.0 27.6 44'3 64.9 89.5 27.9 44'6 65.3 89.9 28.1 44'9 65'7 90.3 28.3 45'2 66'0 90.8 28.6 45'5 66'4 91.2 28.8 45'9 66'8 91.7 29.1 46'2 67.2 92.1 29.4 46'5 67.6 92-6 29.6 46'8 68.0 93.0 54 1.6 7.1 16.5 29.9 47.1 68.3 93.5 55 1.6 7.2 16.7 30.1 47.5 68.7 93.9 56 1.7 7.3 16.9 30.4 47'8 69'1 94-4 57 1.8 7.5 17.1 30.6 48.1 69.5 94.8 58 1.8 7.6 17.3 30.9 48.4 69.9 95.3 59 1.9 7.7 17.5 31.1 48.8 70.3 95.7 1066 137 4 172.2 2110 2536 Table XVIII. of Mr. Baily extends to 36 minutes from the meridian. 40 7.7447 7.6823 6 0 7.7703 7.6198 8 0 7.8072 7-506210 0 7.8567 7.2697 In Table XVI. of Mr. Baily, the Equation of equal Altitudes interval of 24 hours, but it is seldom required beyond the above limits. given for the entire R TABLE XV. LENGTH OF A SECOND OF LATITUDE AND LONGITUDE IN FEET ON THE SURFACE OF THE EARTH, THE COMPRESSION BEING TAKEN AS 300. Puissant, calculating the compression from the measurement of the great arc in France, obtains different results on different sides of the Meridian of Paris, making it as low as 236 on the side of the Atlantic, and 305 to the Eastward; which latter quantity is generally assumed on the Continent. |