Course of Civil Engineering: Comprising Plane Trigonometry, Surveying, and Levelling. With Their Application to the Construction of Common Roads, Railways, Canals ...S.J. Machen, 1842 |
From inside the book
Results 1-5 of 10
Page 129
... 99896 99900 99904 99909 998 99913 99917 99922 99926 99930 99935 99939 99943 99948 99952 999 99956 9996199965 99970 99974 99978 9998399987 | 99991 | 99996 I 00 10 20 30 40 -110122 N. sin N. cos LOGARITHMS OF NUMBERS . 129.
... 99896 99900 99904 99909 998 99913 99917 99922 99926 99930 99935 99939 99943 99948 99952 999 99956 9996199965 99970 99974 99978 9998399987 | 99991 | 99996 I 00 10 20 30 40 -110122 N. sin N. cos LOGARITHMS OF NUMBERS . 129.
Page 130
... N. sin N. cos N. sin N.cos N.sin | N.cos N. sin N.cos N. sin N.cos / 00000 1.0000001745 99985 03490 99939 05234 998636976 99756 60 00029 1.00000 01774 99984 03519 99938 05263 99861 07005 99754 59 00058 1.00000 01803 99984 03548 99937 ...
... N. sin N. cos N. sin N.cos N.sin | N.cos N. sin N.cos N. sin N.cos / 00000 1.0000001745 99985 03490 99939 05234 998636976 99756 60 00029 1.00000 01774 99984 03519 99938 05263 99861 07005 99754 59 00058 1.00000 01803 99984 03548 99937 ...
Page 131
... N. sin | N.cos N. sin N.cos N. sin N.cos N. sin N.cos N. sin N.cos 7 0 08716 99619 10453 99452 12187 99255 13917 99027 15643 98769 60 108745 99617 10482 99449 12216 99251 13946 99023 15672 98764 59 208774 99614 10511 99446 12245 99248 ...
... N. sin | N.cos N. sin N.cos N. sin N.cos N. sin N.cos N. sin N.cos 7 0 08716 99619 10453 99452 12187 99255 13917 99027 15643 98769 60 108745 99617 10482 99449 12216 99251 13946 99023 15672 98764 59 208774 99614 10511 99446 12245 99248 ...
Page 132
... sin N.cos 0906.522455 97437 24192 97030 60 22397430 24220 97023 59 520 2 97424 24249 97015 58 第 97417 24277 97008 ... N.cos N.sin N.cos N. sin N.cos N. sin N.cos N. sin N.cos N.sin 7 790 780 77 ° 760 750 150 NATURAL SINES . 160 ...
... sin N.cos 0906.522455 97437 24192 97030 60 22397430 24220 97023 59 520 2 97424 24249 97015 58 第 97417 24277 97008 ... N.cos N.sin N.cos N. sin N.cos N. sin N.cos N. sin N.cos N.sin 7 790 780 77 ° 760 750 150 NATURAL SINES . 160 ...
Page 133
... N. sin N.cos N.sin | N.cos N.sin N.cos N. sin | N.cos N.sin | N.cos / 0 25882 96593 27564 96126 29237 95630 30902 95106 32557 94552 60 125910 96585 27592 96118 29265 95622 30929 95097 32584 94542 59 2 25938 96578 27620 96110 29293 ...
... N. sin N.cos N.sin | N.cos N.sin N.cos N. sin | N.cos N.sin | N.cos / 0 25882 96593 27564 96126 29237 95630 30902 95106 32557 94552 60 125910 96585 27592 96118 29265 95622 30929 95097 32584 94542 59 2 25938 96578 27620 96110 29293 ...
Other editions - View all
Course of Civil Engineering: Comprising Plane Trigonometry, Surveying, and ... John Gregory No preview available - 2015 |
Course of Civil Engineering: Comprising Plane Trigonometry, Surveying, and ... John Gregory No preview available - 2018 |
Common terms and phrases
acres angles of elevation ascertain base line bisect boundary calculation centre chain chord circumferentor compasses cosecant Cosine Sine Cotang Cotang Sine Cosine deducted degrees diameter difference direction distance divided divisions equal error extend feet field-book figure ground height Hence horizontal instrument length line of numbers line of sines line of tangents logarithmic mark measure the angles meridian method minutes multiplied N.cos N.sin N.cos natural number natural sine needle number answering object offsets parallel ruler parish perches perpendicular plane triangle plotted Prop protractor quotient radius right angles right-angled triangle roods scale secant sextant side AC Sine Cosine Tang Sine Cotang Tang spherical angles spherical excess spherical triangle station line surveyor taken theodolite three angles Tithe Commissioners took the angle Torfou Townlands trapezium triangle ABC trigonometrical survey versed sine vertical yards
Popular passages
Page ix - into 360 equal parts, called degrees ; each degree being divided into 60 equal parts, called minutes ; and each minute into 60 equal parts, called seconds, &c.
Page 38 - the angle opposite to that other given side is always acute. But when the given side opposite to the given angle, is less than the other given side, then the angle opposite that other given side may be either acute or obtuse, and
Page 147 - The number of changes shows how many times ten chains the line contains, to which the follower adds the arrows he holds in his hand, and the number of links of another chain over to the mark or end of the line.
Page 40 - sum of the other two, as their difference is to the difference of the segments of the base, made by a perpendicular
Page 81 - Suppose that in carrying on an extensive survey, the distance between two spires, A and B, has been found equal to 6594 yards, and that C and D are two eminences conveniently situated for extending the triangles, but not admitting of the determination of their distance by actual admeasurement ; to ascertain it, therefore,
Page 206 - materially from the arcs which they subtend. Let the three angles of the spherical triangle be represented by A, B, C ; and their opposite sides by a, b, c ; and let a', b', c', represent the chords of these sides, which chords are supposed not to differ
Page 40 - of half the perimeter above those sides, as the square of the radius is to the square of the sine of half the angle included by
Page 70 - of the bottom of the object, equal 27°, and of its top 19°. Required the height of the object, and the distance of the mark from its bottom. Here,
Page 5 - 0, 10, 20, 30, &c. ; each of these large divisions represents 10 degrees of the equator, or 600 miles. The first of these divisions is sometimes divided into 40 equal parts, each representing 15 miles. The
Page 148 - with the cross, by fixing it by trials on such parts of the line as that through one pair of the sights both ends of the line may appear, and through the other pair you