| | 10 1 9 20 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 9 | | 25 01011 1 1 1 2 2 2 2 2 3 3 3 3 3 3 The Parallaxes and Semidiameters of the Planets are given in the “Nautical Almanac.” 11 0106 2.6 7.8 13.7 | 31.4 49.1 76 7 962 125.7 | 159.0 196.3 237.5 282.7 331.8 384.7 10.02.0 8.0 17.9 31.7 49.4 71.1 96.7 126.2 159.6 197.0 238.3 | 283.5 332 6 385.6 2 0.0 2.1 8.1 18.1 31.9 49.7 71.5 97.1 126.7 160.2 197.6 239.0 284.2 | 333.4 386.6 3 0.0 2.2 8.2 18.332.2 50.1 71.9 97.6 127.2 | 160.8 198.3 239.7 285.0 334.3 387.5 4 0.0 2.2 84 18.5 32 5 50.4 72.3 98.0 | 127.8 | 161.4 198.9 240.4 285.8335.2 388.4 5 0.0 2.3 8.5 18.7 32.7 50.7 72.7 98 5 128 3 162.0 199.6 241.2 286.6 336.0 389.3 6 0.0 2 4 8.7 18 9 33.0 51.1 73.1 99.0 | 128.8 162.6 200.3 | 241.9 287.4 336.9 390.2 7 0.0 2.4 8.8 19.1 33.3 51.4 73.5 99.4 | 129.3 1632 2009 242.6 | 288.2337.7 | 391.1 8 0.0 2.5 8.9 19.3 33.5 51.7 73 9 99.9 129.9 163.8 201.6 243.3 | 289.0 338.6 392.1 9 0.0 2.6 9.1 19.5 33.8 | 52.1 74.3 100.4 130.4 164 4 202 2 244.1 289.8339.4 | 393.0 10 0.1 2.7 9.2 19.7 34.1 52.4 74.7 100.8 131.0 | 165.0 | 202.9 244.8 290 6340.3 393.9 11 0.1 2.7 9.4 19.934 4 52.7 75.1 101.3 | 131.5 165.6 203.6 245.5 291.4 341.2 394.8 12 0.1 2.8 9.5 20.1 34.6 53 1 75 5 101.8 132 0 | 166 2 204 2 246.3292.2 342.0 | 395.8 130.1 2.9 9.6 20.3 34.9 53.4 75.9 102.3 132.6 166.8 204.9 217.0 293.0 342.9 396.7 140.13.0 9.8 20.5 35.2 53.8 76 3 102.7 133,1 167.4 205.6 247.7 293.8 343.7 397.6 15 0.1 3.1 9.9 20.7 35.5 54.1 76.7 103.2 133.6 168.0 206.3248.5 294.6 344.6 398.6 16 0.1 3.1 10.1 20.9 35 7 54.5 134.2 168.6 206.9 249 2 295.4 345.5 399.5 17 0.2 3.2 10.2 21.2 36.0 54.8 77.5 104.2 | 134.7 169.2 207.6 249.9 296.2 346.4 400.5 18 0.2 3.3 10.4 21.4 36.3 55.1 77.9 104.6 135.3 | 1698 208.3 250.7297.0 347.2 401.4 19 0.23.4 10.5 21.6 36.6 55.5 78 3 105 1 135.8 | 170•4 208.9 251.4 297.8 348.1 402 3 20 0.2 3.5 10.7 21.8 36.9 55.8 78.8 105.6 136.3 171.0 209.6 252 2 298.6 | 349.0 403.3 21 0 23.6 10.8 22.037.256.2 79.2 106.1 136.9 171 6 210.3 253.0 299.4 349.8 404.2 22 0.3 3.7 11.0 22.3 37.4 56.5 79.6 106.6 137.4 172.2 211.0 253.6 300.2 | 330.7 405.1 23 0.3 3.8 11.2 22.5 37.7 56 9 80.0 107.0 138.0 172.9 211.7 251.4 301,0 351.6 406.0 24 0.3 3.8 11.3 22.738.0 57.3 80.4 107.5 138.5 173.5 212.3 255.1 301.8 352.5 407.0 25 0.3 3.9 11 5 22.9 38.3 57.6 80 8 108 0 139.1 174.1 213.0 255.9 302.6 353.3 408.0 26 0.44.0 11.6 23.1 38.6 58.0 81.3 108 5 139.6 174.7 213.7 256.6 303.5 354.2 | 408 9 27 0.4 4.1 11.8 23.4 38.9 58.3 81.7 109.0 140.2 175.3 214.4257.4 301.3 355.1 409.9 28 0.4 4.2 11.9 23 6 39.2 58.7 82.1 109 5 140.7 175.9 215.1 258.1 305.1 356.0 410.8 29 0.5 4.3 12.1 23.8 39.5 59.0 82.5 110 0 141.3 176.6 215.8 i 258.9 | 305.9 356.9 4117 30 0.5 4.4 12.3 24.0 39.8 59.4 83.0 110.4 141.8 177.2 216.4 259.6 306.7 357.7412.7 31 0.5 4.5 12,4 24 3 40 1 59.8 83.4 110.9 142.4 177.8 217.1 260.4 307.5 358,6 413.6 32 0.6 4.6 12.6 24.5 40.3 60.1 83.8 111 4 143.0 178.4 217.8 261.1 308.4 359 5 414.6 33 0.6 4.7 128 24:7 40.6 60.584.2 111.9 143.5 179.0 218.5 261.9 309.2 360.4415.5 34 0.6 4.8 12.9 25.0 40.9 60.8 84.7 112.4 144.1 179.7 219 2 262.6 310.0 | 361.3416.5 3507 4.9 13.I 25 2 412 61.2 85.1 112.9 144 6 180.3 219.9 263.4 310.8 362.2417.5 36 0.7 | 5.0 13.3 25.4 41.5 61.6 85.5 113.4 145.2 180.9 220.6 264.1 311.6 363.1 418.4 37 0.7 5.1 13.4 25.741.8 61.9 86.0 113.9 | 145.8 181.6 221.3 264.9 312.5 364.0 419.4 38 0.8 5.2 13.6 25.9 42.1 62.386.4 114.4146.3 182.2 | 222.0 265.7 313.3 364.8420.3 390.8 5.3 13.8 26.2 42.5 62.7 86.8 114.9 146.9 182.8 222.7 266.4 314.1 365.7 421.3 400.9 5.4 14.0 26.4 42.8 63 0 87.3 115.4 147.5 183.5 223.4 267.2315.0 366.6 422.2 41 0.9 5.6 14.1 26.6 43.1 63.4 87.7 115.9 148.0 | 184.1 224.1 267.9315.8 367.5 423.2 42 1.0 5.7 14.3 26.943.4 63.8 88.1 116.4 148.6 184.7 224.8 268.7 316,6 368.4 | 424.2 43 | 1.0 5.8 14.5 27.143.7 64.2 88.6 116.9 149.2 185.4 225.5 269.5 317.4 369.3 425.1 44 1.1 5.9 1 1 14.7 27.444.0 | 64.5 89.0 117.4 149.7 186.0 226.2. 270.3 318,3 370.2 426.1 45 1.1 6.0 14.8 27.6 44.3 64.9 89.5 117.9 150.3 186 6 226.9 271.0 319.1 371.1427.0 461.2 6.1 15.0 27 9 44.6 65.3 89.9 118.4 150 9 187.3 227.6 271.8 319.9 372.0 428.0 47 1.2 | 6.2 15.2 28.1 44.965.790.3 118.9 | 151.5 187.9 228 3 272.6 320.8 372.9429 48 1.3 6.4 15.4 28.3 45.2 66.0 96 8 119.5 152.0 188.5 229.0 273.3 321.6 373.8 429.9 49 1.3 6.5 15.6 28.6 45.5 66.4 91.2 120.0 156 189.2 229.7 274.1 322.4 374.7 430.9 50 1.4 6.6 15.8 28 8 45.9 66.8 91.7 120.5 153.2 189.8 230.4 274.9 323.3 375.6 431.9 51 1.4 6.7 15.9 29.1 46.2 67.2 92.1 121.0 | 153 8 190.5 231.1 275.6 324.1 376.5 432.8 52 1.5 6.8 16.1 29.4 46.5 67.6 92.6121.5 154.4 191.1 231.8 276.4 325.0 377.4 433.8 53 1.5 7.0 16.3 29.6 46.8 68.0 93.0 122.0 154.9 191.8 232.5 277.2 325.8 378.3 434.8 54 1.6 7.1 16.5 29.947.1 68.3 93.5 122.5 155.5 1924 233 2 278.0 326.7 | 379.3 435.8 55 1.6 7.2 16.7 | 30.1 47.5 68.7 93 9 123.1 156.1 193.1 234.0 278.8 327.5 380.2436.7 56 1.7 7.3 16.9 30.4 | 47.8 69.1 94.4 123.6 | 156.7 193.7 234.7 279.5 328 4 | 381.1 437.7 57 1.8 7.5 17.1 30.6 69.5 94.8 124.1 157 3 191.4 235.4 280.3 329.2 382.0 438.7 58 1.8 7.6 17.3 30.9 48.4 69.9 95.3 124.6 157.8 195.0 236.1 281.1 330.0 382.9 439.7 59 1.9 7.7 17.5 31.1 48.8 70.3 95.7 125.1 158.4 195.7 | 236.8 281.9 330.9 l 383.8 1 440.6 48.1 Table 18 of Mr. Baily, extends to 36 minutes from the Meridian. TABLE XIV. . TO COMPUTE THE EQUATION OF EQUAL ALTITUDES. H. M. 2 10 12 14 20 22 24 26 28 30 32 34 36 38 40 H. M. 2 7298 4 .7300 6 .7302 8 .7304 10 .7305 .7307 .7309 16 .7311 18 .7313 20 .7315 22 .7317 24 .7319 26 .7321 28 .7323 30 .7325 32 .7327 34 .7329 36 .7331 38 .7333 40 .7336 42 7338 44 7340 46 .7342 48 .7345 50 .7247 52 7349 54 .7352 56 .7354 58 .7357 3 0 7359 .7367 8 .7369 10 .7372 12 .7374 14 .7377 16 .7380 .7383 20 .7386 22 .7388 24 7391 26 .7394 28 .7397 30 .7400 32 .7403 34 .7406 36 .7409 38 .7412 40 .7415 42 .7418 44 .7421 46 .7424 48 7.7146 5 Inter- Log. A. Log. B. Inter- Log. A. Log. B. val. val. H. M. H. M. 6 0 7.7703 7.6198 8 0 7.8072 7.5062 2 .7708 .6194 2 .8079 .5036 4 .7713 .6170 4 .8056 .5010 6 .7719 .6156 6 .8094 .4983 8 .7724 .6142 .8107 .4957 10 .7729 .6127 .8108 .4930 12 .7735 .6113 12 .8116 .4902 14 .7740 .6098 14 .8123 .4874 16 .7745 .6083 16 .8130 .4816 18 .7751 .6068 18 .8138 .4818 20 .7756 .6053 20 .8145 .4789 22 .7762 .6038 22 .8153 .4760 24 .7767 .6023 24 .8160 .4731 26 .7773 .6007 26 .8168 .4701 28 .7779 .5991 28 .8176 .4671 30 .7784 .5975 30 .8183 .4610 32 .7790 .5959 32 .8191 .4609 34 .7796 .5943 34 .8199 .4578 36 .7801 .5927 36 .8206 .4546 38 .7807 .5910 38 .8214 .4514 40 .7813 .5894 40 .8222 .4482 42 .7819 .5877 42 .8230 .4449 44 .7825 .5860 44 .8238 .4415 46 .7831 .5843 46 .8246 .4381 48 .7836 .5825 48 .8254 .4347 50 .7842 .5808 50 .8262 .4312 52 .7848 .5790 52 .8270 .4277 54 .7854 .5772 54 .8278 ,4241 56 .7860 .5754 56 .8286 .4205 58 .7867 .5736 58 .8294 .4168 7 0 .7873 .5717 19 0 .8302 .4131 2 .7879 .5699 2 .8311 .4093 .5661 6 .8328 .4016 8 .7898 .5641 8 .8336 .3977 10 .7904 .5622 10 .8344 .3937 12 .7910 .5602 12 .8353 .3896 14 .7916 .5582 14 .8361 .3855 16 .7923 .5562 16 .8370 .3813 18 .7929 .5542 18 .8378 .3771 20 .7936 .5522 20 .8387 .3728 22 .7942 .5501 22 .8396 .3684 24 .7949 .5480 24 .8404 .3639 26 .7955 .5459 26 .8413 .3594 28 .7962 .5437 28 .8422 .3548 30 .7969 .5416 30 .8430 .3501 32 .7975 .5394 32 .8139 .3454 34 .7982 .5372 34 .8448 .3406 36 .7989 .5350 36 .8457 .3357 38 .7995 .5327 38 .8466 .3307 40 .8002 .5304 40 .8475 .3256 42 .8009 .5281 42 .8481 .3205 44 .8016 .5258 44 .8493 .3152 46 .8023 7.7447 0 2 4 6 8 10 12 14 16 18 7.6823 .6815 .6807 .6800 .6792 .6784 .6776 .6768 .6759 .6751 .6743 .6734 .6726 .6717 .6708 .6700 .6691 .6682 .6673 .6663 .6654 .6645 .6635 .6626 .6616 .6606 .6597 .6587 .6577 .6567 .6556 .6546 .6536 .6525 .6514 .6504 .6493 .6482 .6471 .6460 .6448 .6437 .6425 .6414 .6402 .6390 .6378 .6366 .6354 .6342 .6329 .6317 .6304 .6291 .6278 .6265 .6252 .6239 .6225 .6212 ,6198 18 20 22 24 26 28 30 32 34 36 38 SA 40 42 44 46 48 50 52 54 56 58 0 .7428 50 .7431 52 .7434 54 .7437 56 .7441 58 .7444 4 7.7447 .5234 46 .8502 .3099 48 .8030 .5211 48 .8511 .3045 50 .8037 .5186 50 .8520 .2989 52 .8044 .5162 52 .8530 .2933 54 .8051 .5137 54 .8539 .2876 56 .8058 .5112 56 .9548 .2817 58 .8065 .5087 58 .8558 .2758 8 0 7,8072 7,5062 110 7.56 7,2697 生如&w8年 In Table 16 of Mr. Baily, the Equation of equal Altitudes is given for the entire interval of 24 hours, but it is seldom required beyond the above limits. TABLE XV. LENGTH OF A SECOND OF LATITUDE AND LONGITUDE IN FEET ON THE SURFACE OF THE EARTH, THE COMPRESSION BEING TAKEN AS 300 0 101.42 101.60 102.02 1 25 26 27 28 29 50 51 52 2 65.32 3 53 4 5 91.97 91.21 90.43 89.62 88.77 87.90 87.01 86.09 85.14 84.17 83.17 6 54 55 56 57 58 31 32 33 34 7 8 9 101.45 35 101.42 101.40 101.36 101.28 101.17 101.03 100.87 100.67 100.44 100.18 99.89 99.57 99.22 98.84 98.43 97.99 97.52 97.02 96.49 95.44 95.36 94.74 94.09 93.41 92.70 10 11 12 13 14 15 16 17 18 19 20 21 22 23 102.26 55.37 53.87 52.36 50.84 49.30 47.74 46.17 44.58 42.98 41.37 39.74 38.10 36.45 34.80 33.12 31.43 29.74 41 67 81.10 80.02 78.92 77.80 76.65 75.48 74.29 73.07 71.83 70.57 69.29 67.99 66.66 42 68 44 69 46 71 72 47 73 28.04 One second of time, at the Equator 1521.3 feet, or 507 yards. Puissant, calculating the compression from the measurement of the great arc in France, obtains different results on different sides of the Meridian of Paris, making it as low as ito on the side of the Atlantic, and zoo to the Eastward ; which latter quantity is generally assumed on the Continent. |